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Direct numerical simulations (DNS) of the Navier–Stokes equations are used to
investigate the role of the Klebanoff-mode in laminar–turbulent transition in a flat-
plate boundary layer. To model the effects of free-stream turbulence, volume forces
are used to generate low-frequency streamwise vortices outside the boundary layer.
A suction/blowing slot at the wall is used to generate a two-dimensional Tollmien–
Schlichting (TS) wave inside the boundary layer. The characteristics of the fluctuations
inside the boundary layer agree very well with those measured in experiments. It is
shown how the interaction of the Klebanoff-mode with the two-dimensional TS-wave
leads to the formation of three-dimensional TS-wavepackets. When the disturbance
amplitudes reach a critical level, a fundamental resonance-type secondary instability
causes the breakdown of the TS-wavepackets into turbulent spots.

1. Introduction
In the ‘classical’ view, laminar–turbulent transition in a boundary layer on a flat

plate in a low-disturbance environment is seen as the result of four distinct processes
(Morkovin 1993): receptivity – linear instability – secondary instability – breakdown.

In the first stage, receptivity, disturbance waves in the boundary layer are excited
by external perturbations such as surface roughness, surface vibrations, sound waves,
free-stream turbulence (FST), or unsteady pressure gradients.

Beyond a certain critical Reynolds number Recr , disturbance waves inside the
boundary layer may become amplified due to a linear instability of the steady mean
flow. These amplified waves are called Tollmien–Schlichting (TS) waves. When the
amplitude of a TS-wave has reached a sufficiently high level, the TS-wave and the
steady mean flow together can be thought of as a new base flow. In a coordinate
system that moves with the phase speed of the TS-wave, this base flow is approximately
steady in time but periodic in the streamwise direction x. This periodic base flow
becomes susceptible to a Floquet-type secondary instability (Craik 1971; Herbert
1988). This instability gives rise to disturbances which are typically oblique (i.e. with
non-zero spanwise wavenumber). At this stage, disturbance growth becomes so strong
that turbulent spots and breakdown to turbulence occur within a short streamwise
distance.

The major shortcoming of the above transition scenario is that it can only be
observed in carefully controlled experiments, i.e. in specially designed wind and
water tunnels where free-stream turbulence, ambient noise, and vibrations have been
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reduced to a minimum. Whether this route to turbulence is prevalent in free flight is
an unresolved issue. Under ‘natural’ conditions found in wind tunnels with FST levels
Tu > 0.1%, transition appears to be preceded by streamwise streaks in the boundary
layer. These streaks are now commonly referred to as the ‘Klebanoff-mode’ (or K-
mode), after P. S. Klebanoff who first described them (Klebanoff & Tidstrom 1959;
Klebanoff 1971). His basic findings have been confirmed in numerous experiments
by other researchers (Arnal & Juillen 1978; Kendall 1985, 1990, 1992; Westin et al.
1994; Boiko et al. 1994).

The streamwise streaks associated with the K-mode are fundamentally different
both from TS-waves and from the structures commonly observed in turbulent bound-
ary layers. They are longitudinal structures inside the boundary layer that appear
to be caused by free-stream turbulence. Characteristic features of the K-mode are
its low frequency and its high amplitude. Fluctuations as high as urms/U∞ = 15%
have been recorded in boundary layers before the appearance of turbulence. This is
in strong contrast to the amplitudes commonly observed in TS-waves, where values
of urms/U∞ ≈ 1.5% are usually an indication of imminent transition to turbulence.
Also in contrast to the exponential growth of TS-waves, in most experiments the
amplitude of the K-mode increases algebraically in the streamwise direction, being
roughly proportional to

√
x. The structures are long in the streamwise direction and

narrow in the spanwise direction, with a characteristic spanwise length scale (in this
paper the spanwise wavelength is used) of a few boundary layer thicknesses δ99% of
the unperturbed boundary layer. At present there is no consensus on whether this
spanwise scale is imposed by the scale of the free-stream turbulence or whether it is
an intrinsic scale of the boundary layer. In the wall-normal direction the structures
extend across the whole boundary layer.

To date, there is no comprehensive theory concerning the origin and streamwise
development of the K-mode. There have been several theoretical studies of the
development of steady spanwise perturbations in a Blasius boundary layer. Crow
(1966) used an asymptotic expansion to study the response of a Blasius boundary layer
to steady spanwise perturbations of the free-stream velocity U(z) = U∞(1 + ε sin(γz)).
Within the limits of his analysis, νγ/U∞ � γx� U∞/νγ, he found that the spanwise
variation of the boundary layer thickness was proportional to εk. Goldstein and
coworkers used numerical solutions of the three-dimensional boundary layer equations
to investigate the effects of steady normal (Goldstein, Leib & Cowley 1992) and
spanwise (Goldstein & Leib 1993) free-stream perturbations on boundary layers.
In both cases they found strong growth of steady spanwise distortions inside the
boundary layer which eventually caused the boundary layer to separate. Bertolotti
(1993), using the parabolized stability equations (PSE), found that, in the absence of
free-stream perturbations and any other forcing, steady vortices decayed in a Blasius
boundary layer.

The role of the K-mode in laminar–turbulent transition is still not understood.
When the FST level is increased, the amplitude of the K-mode increases as well, and
the transition to turbulence occurs farther upstream in the boundary layer. There is,
however, no clear link between the K-mode and any known instability or transition
mechanism. Because of the intensity of the overall fluctuations, it is quite difficult to
measure the amplitudes of TS-waves in the presence of the K-mode. Kendall (1992)
reported that naturally occurring TS-waves appeared in the form of wavepackets.
Their growth depended on their amplitude, and their spanwise extent appeared to be
related to the spanwise scale of the K-mode. These characteristics are in contrast to
those of artificial wavepackets in an otherwise quiescent boundary layer, whose growth
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and spanwise spreading is described well by linear stability theory (Gaster & Grant
1975). Boiko et al. (1994) artificially excited a time-harmonic two-dimensional TS-
wave with a vibrating ribbon in the presence of free-stream turbulence. They showed
that artificial excitation of TS-waves had a strong effect on transition. An increase in
the forced TS-amplitude lead directly to an increase in the number of turbulent spots
observed further downstream, and caused transition to occur earlier. However, they
also found that the ensemble-averaged growth rates of the artificially induced two-
dimensional TS-waves were smaller than predicted by theory (for a Blasius boundary
layer without the K-mode), and that an increase of the K-mode amplitude resulted
in a decrease of the TS-wave growth rates. These findings, seemingly contradictory,
point to the important role that is played by intermittency in this transition route.

2. Scope of the present work
In this study an attempt is made to model the effects of free-stream turbulence on

the K-mode, and subsequently on transition, in a flat-plate boundary layer. It should
be stated at the outset that this work is not intended to be a complete direct numerical
simulation of the evolution of free-stream turbulence in the presence of a boundary
layer, and of its influence on transition inside the boundary layer. Such a simulation
would have to capture a wide band of wavenumbers and frequencies, requiring
hundreds of grid points in all three spatial directions and thousands of time steps.
It would reach the limits of today’s most powerful computers, without necessarily
providing more physical insight than a simplified model. However, such a simulation
may be necessary to obtain complete quantitative agreement with experiments.

Here, the goal is to find a numerical model that is sufficiently simplified to allow
practical simulations, yet realistic enough to capture the relevant physical mechanism.
A review of the available experimental results can serve as a starting point to determine
what should be included in (or reproduced by) such a model. All experimental reports
agree on certain characteristics of the K-mode fluctuations inside flat-plate boundary
layers (Arnal & Juillen 1978; Kendall 1985, 1990, 1992; Westin et al. 1994):

(i) very low frequencies compared to TS-waves;
(ii) distinct spanwise scaling, O(2δ99% − 4δ99%);

(iii) streamwise growth proportional to
√
x;

(iv) high amplitudes urms = O(10%U∞).
The strong response of the boundary layer appears to be limited to a narrow band of
the wavenumber–frequency spectrum. Furthermore, the growth of the disturbances
(algebraic, instead of, say, exponential) suggests that the receptivity of the boundary
layer to free-stream turbulence is distributed, rather than concentrated at the leading
edge or at a surface imperfection. Also, if the free-stream turbulence is sufficiently
homogeneous, the combined effects of most turbulent eddies on the boundary layer
would tend to cancel each other. Then, due to the rapid decay of the velocity induced
by turbulent eddies farther away from the wall, most of the influence of free-stream
turbulence on the boundary layer would come from those eddies that are closest to
the edge of the boundary layer.

These considerations suggest the following approach to a simplified numerical
model for the generation of the K-mode. Low-frequency volume forces are used to
generate unsteady vortices in the free stream. The volume forces are concentrated near
the leading edge of the plate, between the edge of the boundary layer and the free-
stream boundary. The details of the forcing algorithm are given in § 3. This forcing
generates long, narrow, streamwise vortices. Once generated, the vortices are swept



4 H. F. Fasel

downstream by the free stream, and they are sufficiently attenuated inside the buffer
domain (see § 3) so that they do not cause any reflections at the outflow boundary.
Also, this method of generating free-stream vortices ensures that no vorticity reaches
the inflow or free-stream boundaries. While the vortices are exponentially damped
in the downstream direction, they cause spanwise perturbations of the free-stream
velocity, which in turn continuously force the boundary layer. To assess the validity
and accuracy of the numerical model, the response of the boundary layer to these
unsteady free-stream vortices in the numerical simulations is compared to the response
of boundary layers to ‘real’ free-stream turbulence measured in experiments. Good
qualitative (and quantitative) agreement between the numerical and experimental
results can be considered as a validation and confirmation of the numerical model.

In this paper the results of several numerical simulations are presented. In § 4,
the linear and nonlinear evolution of a flat-plate boundary layer subject to steady
and low-frequency free-stream vortices is investigated. First, the results of simulations
using the linearized Navier–Stokes equations are presented. These results provide the
necessary information for the selection of the appropriate wavenumber–frequency
combinations for later, nonlinear calculations. They also serve as benchmarks to
determine the correct forcing amplitudes to obtain a desired fluctuation level in-
side the boundary layer. Next, the effects of high-amplitude, unsteady free-stream
vortices on a boundary layer are calculated using the full nonlinear Navier–Stokes
equations.

In § 5, a two-dimensional TS wave is added to the K-mode flow calculated in § 4.
Finally, the amplitude of the TS-wave is increased to the point where it is high enough
to cause transition.

3. Numerical model
3.1. Governing equations

The governing equations are the incompressible, unsteady Navier–Stokes equations
in vorticity–velocity formulation (Fasel, Rist & Konzelmann 1990). They consist of
three transport equations for the vorticity components ωx, ωy, ωz in the streamwise
(x), normal (y), and spanwise (z) directions, respectively,

∂ω

∂t
= ∇× (u× ω) +

1

Re
∇2ω − ∇×F, (3.1)

where F is a volume force defined in § 3.3. Here, the vorticity is defined as the
negative curl of the velocity ω = −∇× u,

ωx =
∂v

∂z
− ∂w

∂y
, ωy =

∂w

∂x
− ∂u

∂z
, ωz =

∂u

∂y
− ∂v

∂x
. (3.2)

In addition, there are three Poisson equations for the streamwise (u), normal (v),
and spanwise (w) velocity components,

∂2u

∂x2
+
∂2u

∂z2
= −∂ωy

∂z
− ∂2v

∂x ∂y
, (3.3a)

∇2v =
∂ωx

∂z
− ∂ωz

∂x
, (3.3b)

∂2w

∂x2
+
∂2w

∂z2
=
∂ωy

∂x
− ∂2v

∂y ∂z
. (3.3c)
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Figure 1. Computational domain with volume forcing of free-stream vortices and suction/blowing
slot for TS-waves. For better visibility, the y-coordinate is magnified 15 times relative to the
x-coordinate.

In these equations, the velocities are normalized by the free-stream velocity U∞.
The spatial variables x, y, z are normalized by a reference length L, and the time t is
normalized by U∞/L. The global Reynolds number is defined as Re = U∞L/ν.

The flow is assumed to be periodic in the spanwise direction z and symmetric with
respect to z = 0. Therefore, the flow field is expanded in Fourier cosine (u, v, ωz) and
sine (w,ωx, ωy) series with K spanwise Fourier modes.

3.2. Boundary conditions

The governing equations are solved inside a rectangular integration domain x0 6 x 6
xmax, 0 6 y 6 ymax, with periodicity in the spanwise direction z. The computational
domain is shown schematically in figure 1.

At the inflow boundary at x = x0, the velocity and vorticity profiles of a steady
Blasius boundary layer are specified.

At the wall at y = 0 no-slip conditions are imposed on u and w. The normal
velocity v is zero over the solid part of the wall and is specified across a narrow
suction/blowing slot that is used to generate a two-dimensional TS-wave:

v(x, t) = v̂vs(x) cos(ωt) (3.4)

where v̂ is the amplitude, ω is the angular frequency, and vs(x) is a shape function
that is zero outside the suction/blowing strip and is

x1 6 x 6 xc : vs(ξ) = 1
48

(729ξ5 − 1701ξ4 + 972ξ3), ξ =
x− x1

xc − x1

, (3.5a)

xc 6 x 6 x2 : vs(ξ) = − 1
48

(729ξ5 − 1701ξ4 + 972ξ3), ξ =
x2 − x
x2 − xc (3.5b)

within the strip. x1, x2 are the beginning and end of the strip, respectively, and
xc = (x1 + x2)/2 is its centre. Thus, the net volume flow through the strip is zero
at any time. This technique has proved to be very effective in generating vorticity
disturbance waves with negligible acoustical contents (Fasel et al. 1990).

At the free-stream boundary at y = ymax the flow is assumed to be irrotational.
Thus, all vorticity components and their derivatives are set to zero. A Robin boundary
condition is specified for the disturbance velocity v:

∂v

∂y

∣∣∣
ymax

= −αMv. (3.6)

This condition imposes exponential decay v ∝ exp(−αMy) of disturbances at the free
stream. In the case of a TS-wave, this exponential decay follows from linear stability
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theory, where αM is the wavenumber of the TS-wave. For sufficiently large ymax the
solution is quite insensitive to the value of αM .

Near the outflow boundary a buffer domain is used to prevent reflections of
disturbances. Between x = xB and x = xmax, the disturbance vorticity components are
gradually ramped down to zero (Kloker, Konzelmann & Fasel 1993). At the outflow
boundary, all second derivatives in x are set to zero.

3.3. Generation of free-stream vortices by volume forces

To generate streamwise vortices outside the boundary layer, a (unsteady) volume force
F(x, y, z, t) = [fu,fv,fw] is added to the Navier–Stokes equations. Its components are

fu =

K∑
k=0

f̂uk exp

{
−
(
x− xfk

afk

)2

−
(
y − yfk

bfk

)2
}

cos(γkz) cos(Ωt), (3.7a)

fv =

K∑
k=0

f̂vk exp

{
−
(
x− xfk

afk

)2

−
(
y − yfk

bfk

)2
}

cos(γkz) cos(Ωt), (3.7b)

fw =

K∑
k=0

f̂wk exp

{
−
(
x− xfk

afk

)2

−
(
y − yfk

bfk

)2
}

sin(γkz) cos(Ωt). (3.7c)

Here, xfk , yfk , afk and bfk define the geometry of the forcing of each spanwise Fourier

mode, f̂uk , f̂vk and f̂wk are the amplitudes, and Ω is the frequency. By trial and
error, these parameters were adjusted such that the characteristics of the numerically
generated K-mode matched those of the experimental observations.

In the calculations, the curl ∇×F is used as a source term on the right-hand side
of the vorticity transport equations.

3.4. Numerical method

The streamwise and wall-normal derivatives are discretized with compact differences,
and the spanwise derivatives are treated pseudospectrally. A semi-implicit combi-
nation of a three-stage Runge–Kutta and a Crank–Nicolson method is used for the
time integration. A detailed description of the numerical method is given by Meitz
(1996).

In each of the case studies in the present paper, several test calculations were
performed to establish appropriate values of the relevant numerical parameters. In
each case, the spatial and temporal discretization, the size of the integration domain,
and the boundary conditions were adjusted until further refinement did not change
the relevant solution parameters (e.g. the amplitudes of the dominant disturbance
components) by more than 2%. The parameters used in the calculations are listed in
table 1.

4. Numerical model of the K-mode
4.1. Linear evolution of spanwise perturbations

For the calculations in this section, the Navier–Stokes equations were linearized
about the Blasius boundary layer flow. Available experimental data provide a range
of spanwise wavenumbers and frequencies to consider for the numerical simulation:
Kendall (1985) measured a typical spanwise spacing between streaks (i.e. a spanwise
wavelength) of 12 local Blasius displacement thicknesses δ at a Reynolds number
Reδ = 1740, which corresponds to a spanwise wavenumber γ = 30 in the present
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U∞ = 15 m s−1, L = 0.1 m ν = 15× 10−6 m2 s−1

x0 = 0.1 (Reδ = 172), xB = 6.55, xmax = 8.1 (Reδ = 1549), 801 gridpoints in x-direction
ymax = 0.15 (= 87δ0), αM = 28, ∆ywall = 0.1786× 10−3, 80 gridpoints in y-direction
∆t = 7.854× 10−3

Free-stream vortices generated by volume forces with parameters

xfk = 0.5, yfk = 0.04, afk = 3.3× 10−2, bfk = 5× 10−3, f̂uk = 0, f̂vk = 0

case LIN-0: F = 0, γ = 30k, for k = 1, . . . , 4, f̂wk = 0.1

case LIN-0.1: F = 0.1, γ = 30k, for k = 1, . . . , 4, f̂wk = 0.1

case NL-weak: F = 0.1, γ = 30k, for k = 1, . . . , 4, f̂wk = 0.1, for k = 1, 2, 3, 4

case NL-1: F = 0.1, γ = 60k, for k = 2, 4, . . . , 38, 40 f̂w2 = 1

case NL-mult: F = 0.1, γ = 30k, for k = 1, . . . , 20 f̂w2 = 1, f̂wk = 0.1, for k = 1, 3, 4

Table 1. Computational parameters for K-mode calculations.

non-dimensional units. Westin et al. (1994) found a spanwise wavelength of 7δ at
Reδ = 890 and of 5.5δ at Reδ = 1260, corresponding to γ = 100 and γ = 90,
respectively. They also found that the energy density spectrum inside the boundary
layer, at Reδ = 890, was nearly flat for frequencies up to F = 0.1 and dropped off for
higher frequencies. Here, F = 2πf∗ν/U2∞ × 104, where f∗ is the frequency in Hz.

With this in mind, calculations were performed for four spanwise wavenumbers
ranging from γ = 30 to γ = 120, and for two frequencies: F = 0, i.e. steady
perturbations, and F = 0.1. These calculations will be referred to as case ‘LIN’. The
u-amplitudes of the disturbances inside the boundary layer are plotted in figure 2(a)
for steady disturbances (case LIN-0) and in figure 2(b) for unsteady disturbances (case
LIN-0.1). Except for the spanwise mode k = 1 (i.e. γ = 30) in the unsteady case LIN-
0.1, all disturbance amplitudes grow in x. In both cases, disturbances with a spanwise
wavenumber γ = 60, i.e. spanwise mode k = 2, have the highest amplitudes. This
agrees well with the experimental observations cited above. A comparison between
the two figures shows that the amplitude of steady disturbances is generally higher
than those of unsteady fluctuations with the same spanwise wavenumber.

In figure 3, the amplitude profiles of the spanwise modes k = 2 are plotted vs.
the normal coordinate y, at the streamwise location x = 3.7. In these plots, all
amplitude curves are normalized by the u-amplitude of the steady mode k = 2,
since that mode has the highest amplitude at that x location. Thus, the amplitude
profile uamp(y, F = 0, k = 2) has a maximum of 1. In addition, the Blasius profiles
uB, vB, ωzB are plotted for comparison. The y-coordinate is normalized by the local
Blasius displacement thickness δ.

The free-stream vortices can be clearly discerned in the plots of the normal and
transverse velocities v and w and the streamwise vorticity ωx. The centre of the
vortices, at y/δ = 4.5, is marked by a local maximum of the w-amplitude. Inside
the boundary layer (y/δ 6 3) the fluctuations are dominated by the streamwise
velocity component u and by its contribution to the normal and spanwise vorticity
components. The streamwise vorticity component ωx, which does not contain any
derivative of u, is two orders of magnitude smaller than ωy and ωz inside the boundary
layer, and is also substantially smaller there than in the free-stream vortices. These
observations suggest that the boundary layer response to free-stream turbulence is
primarily a spanwise modulation of the streamwise velocity. Thus, the streaks seen
in experimental flow visualizations are not due to strong streamwise vortices but are
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Figure 2. Case LIN: amplitudes of (a) steady disturbances and (b) disturbances with frequency
F = 0.1, and spanwise wavenumber γ = 30k. The curves are for k = 1 (�), k = 2 (�), k = 3 (O),
k = 4 (4).

mere artifacts of this spanwise modulation. Such an interpretation of the K-mode
agrees with the experimental observations by Klebanoff (1971), who describes it as ‘a
periodic thickening/thinning of the boundary layer’.

Further insight into the nature of the boundary layer perturbations can be gained
from the amplitude scaling in x and y. In figures 4(a) and 4(b), the ratios of the
u-amplitudes A(x)/A(x = 0.5) are plotted. The amplitudes of the steady disturbances
are seen to scale as x3/4, whereas the amplitudes of the unsteady disturbances do not
scale with any power of x. While the streamwise growth of the steady perturbations
is higher than observed in the experiments (∝ x1/2), the streamwise growth of the
unsteady disturbances with frequency F = 0.1 is lower. Hence, one can expect that it
is possible to find a suitable combination of frequencies between F = 0 and F = 0.1
such that the average (i.e. r.m.s.) amplitudes exhibit the proper scaling in x.

The u-amplitude profiles of the steady disturbance modes k = 1, 2 are nearly
self-similar when plotted vs. the Blasius similarity variable

η =
y√
Rex

[
= 1.72

y

δ

]
. (4.1)

In fact, a good approximation of the Navier–Stokes results is found by inspection as

u(x, y, z) = CFSTx
3/4(f′ − 1

3
ηf′′)f′′ cos(γz) (4.2)

where CFST is a receptivity coefficient and f(η) is the solution of the Blasius equation

ff′′ + 2f′′′ = 0. (4.3)

This function is plotted in figure 5. The Navier–Stokes results, scaled by x3/4, are
plotted for comparison. The steady disturbance modes k = 1, 2 scale remarkably
well with this normalization. Except for the first streamwise location x = 1.3, the
amplitude profiles neatly collapse into one curve. The above scaling does not work
quite as well for the steady disturbance modes k = 3, 4. The unsteady disturbances
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Figure 3. Case LIN: amplitude profiles vs. y/δ at x = 3.7. The curves are: �, Blasius profile;
�, amplitude of steady disturbances with spanwise wavenumber γ = 60; O, amplitude of unsteady
disturbances with spanwise wavenumber γ = 60 and frequency F = 0.1. All amplitude curves
(�, O) are normalized with the maximum value of uamp (F = 0, γ = 60).

do not fit this scaling. It is certainly noteworthy that the most amplified modes are
those whose amplitude profiles are self-similar.

To get a better understanding of the evolution of the unsteady disturbances, the
phase velocity c is plotted in figure 6. Outside the boundary layer, at y = 0.106, c ≈ 1.
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Figure 4. Case LIN: ratio of the u-amplitudes A(x)/A(x = 0.5) of (a) steady disturbances and
(b) disturbances with frequency F = 0.1, with spanwise wavenumber γ = 30k. The curves are for
k = 1 (�), k = 2 (�), k = 3 (∗), k = 4 (4). The straight lines in (a) are ∝ x0.75.

Near the wall, c varies considerably, increasing from c = 0.55 for mode k = 1 near
the upstream end of the integration domain at x = 0.1 to c = 1.05 at x = 5. Except
for mode k = 1, the values of c are lowest near the amplitude maxima in yAmax. A
detailed investigation of the phase velocity shows that c(x, y = yAmax) is considerably
less than the velocity of the Blasius boundary layer at those locations. Due to the
increase of c with y, the phases inside the boundary lag those outside, hence the
phase curves are bent toward the wall. This could explain Kendall’s observation that
‘disturbances appear to move toward the wall’.

4.2. Weakly nonlinear evolution of spanwise perturbations

In this section, the development of low-amplitude disturbances is investigated using
the full, nonlinear Navier–Stokes equations. Since the ultimate goal is to model the
effects of free-stream turbulence, only unsteady perturbations with frequency F = 0.1
were considered. Also, to allow for the nonlinear generation of higher spanwise
wavenumbers, K = 20 spanwise Fourier modes were used in this calculation; however,
only the first four k = 1, . . . , 4 were forced. The first spanwise Fourier mode k = 1
had a spanwise wavenumber γ = 30, corresponding to λz = 0.20944. All other
computational parameters were the same as in the linear calculation in § 4.1. This
allows for a direct comparison with the linear calculations, and thus for an assessment
of nonlinear effects. This simulation will be referred to as case ‘NL-weak’.

The u-amplitudes of the disturbances inside the boundary layer are plotted in
figure 7. The curves for disturbances with frequency F = 0.1 are virtually identical to
those in figure 2(b). Since disturbances with other frequencies are not generated by
direct forcing but through nonlinear interactions, their amplitudes are much smaller
than those of the forced disturbances with F = 0.1. These curves indicate that,
with the low amplitudes used in this simulation, nonlinear effects are negligible in the
development of the forced modes. The r.m.s.-amplitude of the u-disturbance, averaged
over t and z, is plotted in figure 8. The maximum r.m.s.-amplitude is less than 2% of
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Figure 5. Case LIN-0: amplitude profiles of steady disturbances u(x, y), plotted vs. the normal
coordinate y scaled by the local displacement thickness δ(x). The curves are: �, Navier–Stokes,
k = 1, at x = 1.1, 2.5, 3.7, 4.9, scaled by x3/4; ◦, Navier–Stokes, k = 2, at x = 1.1, 2.5, 3.7, 4.9, scaled
by x3/4; - - - -, similarity function x3/4(f′ − η/3f′′)f′′; ——, Blasius velocity un ≡ f′.

U∞. This is a low value compared to K-mode r.m.s.-amplitudes in experiments, which
can be as high as 15%. Note that the r.m.s.-amplitude does not scale with any power
of x. In addition, there is no self-similarity in the urms(y) profiles (not shown here).

Time signals u(t) are plotted in figure 9. The curves show the evolution of u in
time at several x locations, in the centreplane z = 0, at the respective y location of
maximum amplitude. Note the deformation of the curves for increasing x. While the
signal at x = 1.3 is almost identical to that of a pure sine-wave, that at x = 6.1 is
somewhat reminiscent of a sawtooth wave. This shape change is not due to nonlinear
effects, since these were shown earlier to be negligible. Rather, it is due to the different
phase velocities of the individual spanwise Fourier modes. Recall from figure 6
that higher spanwise Fourier modes have a slightly higher phase velocity. Thus, the
different modes combine to form a travelling bump with a maximum in the plane
z = 0.

4.3. Single wavenumber excitation of the K-mode

In this section, the nonlinear response of a Blasius boundary layer to a high-amplitude
free-stream disturbance wave with frequency F = 0.1 and spanwise wavenumber
γ = 60, corresponding to λz = 0.10472, is calculated. The wavenumber γ = 60 was
chosen because the linear (and weakly nonlinear) response of the boundary layer
is strongest at this wavenumber, as shown in the previous sections. Again, the full
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Figure 6. Case LIN: phase velocity of disturbances with frequency F = 0.1 and spanwise wavenum-
ber γ = 30k. The curves are for k = 1 (�), k = 2 (�), k = 3 (O), k = 4 (4), at three different
distances from the wall: outside the boundary layer at y = 0.106 (− − −), near the wall at
y = 7.8× 10−4 (- - - -), and at the y location of maximum amplitude (——).
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Figure 7. Case NL-weak: amplitudes of disturbances with frequencies F = 0 (——), F = 0.1 (- - - -),
and F = 0.2 (−−−) and spanwise wavenumber γ = 30k. The curves are for k = 1 (�), k = 2 (�),
k = 3 (O), k = 4 (4).



Interaction of the Klebanoff-mode with a Tollmien–Schlichting wave 13

x
1 10

0.01

0.1

urms

Figure 8. Case NL-weak: root-mean-square disturbance urms(x).
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Figure 9. Case NL-weak: u plotted vs. t/T , for several streamwise locations x, in the plane z = 0.
Each curve is taken at the respective y location of maximum amplitude. Top curve at x = 1.3,
bottom curve at x = 6.1, x-increment between consecutive curves is 1.2. The vertical offset between
consecutive curves corresponds to u = 0.1.

nonlinear Navier–Stokes equations were used, with 20 spanwise Fourier modes. Since
there was no forcing of disturbance components with a spanwise wavenumber γ = 30,
the lowest spanwise wavenumber in this calculation was chosen as γ = 60. For the sake
of consistent labelling of modes, this Fourier mode will be referred to as k = 2. Thus,
the calculation was carried out with spanwise Fourier modes k = 0, 2, 4, 6, . . . , 38, 40,
corresponding to spanwise wavenumbers γ = 0, 60, 120, . . . , 1200. Only the spanwise

Fourier mode k = 2 was forced, with a forcing amplitude f̂wk = 1. All other
computational parameters were the same as in the linear calculation in § 4.1. This
calculation will be referred to as case ‘NL-1’.
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Figure 10. Case NL-1: amplitudes of disturbances with frequencies F = 0 (——), F = 0.1 (- - - -),
F = 0.2 (−−−), and F = 0.3 (− −) and spanwise wavenumber γ = 30k. The curves are for k = 0
(•), k = 2 (�), k = 4 (4), k = 6 (�), k = 8 (H).

The u-amplitudes of the disturbances inside the boundary layer are plotted in
figure 10. Due to the higher forcing amplitude, the curve for F = 0.1, k = 2 is shifted
up by one unit on the logarithmic ordinate axis relative to the curve F = 0.1, k = 2
in figure 7. A close inspection also reveals that its shape is slightly different: initially,
the amplitude in figure 10 is lower than expected, but then it grows more strongly in
x than the corresponding curve in figure 7. This change of the growth rate is clearly a
nonlinear effect. The much higher amplitude level also causes the nonlinear generation
of numerous other modes. The nonlinear modes with the highest amplitudes are mode
F = 0, k = 4 and mode F = 0.2, k = 2. Note that the shape of the amplitude curves
of the steady mode F = 0, k = 4 is substantially different from that of the linear
calculation in figure 2 (b).

The r.m.s.-amplitude of the u-disturbance, averaged over t and z, is plotted in
figure 11. The maximum r.m.s.-amplitude is higher than 10% of U∞, which is on the
order of the r.m.s.-amplitude levels measured in experiments. Equally important is
the fact that the r.m.s.-amplitude curve scales as x0.6, which is only slightly higher
than the

√
x scaling observed in experiments. Also, in contrast to the case NL-weak,

the r.m.s.-amplitudes are nearly self-similar. The development of the r.m.s.-amplitude
profiles can again be expressed in terms of the Blasius function f(η):

urms(x, y) = CFSTx
0.6(f′ − 1

5
ηf′′)f′′. (4.4)

This scaling function is slightly different from that in equation (4.2), indicating a shift
of the maximum toward the wall. In figure 12, the similarity function is plotted, along
with the results from the Navier–Stokes calculation and experimental data. There
is reasonable agreement between the data from Westin et al. (1994) at Reδ = 890,
the data from Kendall (1985) at Reδ = 1233, and the Navier–Stokes results in the
inner part of the boundary layer, up to the maximum r.m.s.-amplitude at y/δ = 1.3.
In the outer part of the boundary layer, the experimental r.m.s. values, particularly
the ones from Boiko et al. (1994), are higher than the numerical values, and they
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Figure 11. Case NL-1: root-mean-square disturbance urms(x). The straight line is ∝ x0.6.

approach a higher value at the free stream. The discrepancy near the free stream
is almost certainly due to the different origin of the free-stream perturbations. In
the experiments, free-stream turbulence was generated by placing grids into the flow,
which, at low frequencies, mainly excited longitudinal (u) fluctuations (Westin et al.
1994). In the numerical simulations, the free-stream vortices were generated by volume
forces in the spanwise direction, exciting primarily w-fluctuations.

Time signals u(t) are plotted in figure 13. The curves show the evolution of u in
time at several x locations, in the centreplane z = 0, at the respective y location of
maximum amplitude. The time t on the abscissa is scaled by T , where 10 T is the
period corresponding to the frequency F = 0.1 of the K-mode. The change of the
signal from a sine wave at x = 1.3 to a sawtooth wave further downstream is more
pronounced than in figure 9, underlining the important role of nonlinearity in this
flow.

Instantaneous K-mode velocity profiles u(y, z) are plotted in figure 14. These plots
illustrate the change of the velocity profile associated with the thickening–thinning of
the boundary layer in the spanwise direction and in time.

A more detailed view of the velocity profiles is given in figure 15. Here, the total
flow uT = uKleb + uB at x = 4.9 is plotted vs. y/δ, at different times t and at spanwise
locations z = 0, z = λz/4, and z = λz/2. In addition to the thickening–thinning of the
boundary layer, these curves also show another distinct characteristic: the profiles at
(z = 0, t/T = 1), (z = 0, t/T = 3.5), and (z = 0.02618, t/T = 3.5) are inflectional.
This has important consequences for the stability of the flow, which will be discussed
later.

Overall, the agreement between the numerical simulation and the experimental
data is surprisingly good. The forcing of a single disturbance component outside
the boundary layer is sufficient to produce a disturbance flow inside the boundary
layer whose key characteristics match those of the K-mode measured in experiments
with a broad spectrum of free-stream disturbances. A crucial observation is that
the high-amplitude disturbances cause nonlinear effects that qualitatively change the
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Figure 12. Case NL-1: amplitude profiles of root-mean-square disturbances urms(x, y), plotted
vs. the normal coordinate y scaled by the local displacement thickness δ(x). The curves are: −−,
Navier–Stokes at x = 1.1, 2.5, 3.7, 4.9, scaled by x0.6; - - - -, similarity function x0.6(f′−η/5f′′)f′′; ——,
Blasius velocity uB ≡ f′; �, experimental data Reδ = 1233 from Kendall (1985); ◦, experimental
data at Reδ = 890 from Westin et al. (1994); •, experimental data at Reδ = 1260 from Westin et
al. (1994).

scaling of the disturbances in both x and y. This suggests that approaches based on
a linear perturbation of the Blasius boundary layer are intrinsically unsuitable for a
quantitative modelling of the K-mode.

4.4. Multiple wavenumber excitation of the K-mode

The parameters for this simulation were similar to those of the previous simulation

in § 4.3: mode F = 0.1, k = 2 was forced with a high amplitude f̂wk = 1. In addition,

however, modes F = 0.1, k = 1, 3, 4 were also forced, with the low amplitude f̂wk = 0.1.
K = 20 spanwise Fourier modes were used, the lowest spanwise mode being k = 1
with γ = 30. All other computational parameters were the same as in the linear
calculation in § 4.1. This simulation will be referred to as case ‘NL-mult’.

The u-amplitudes of the disturbances with frequencies F = 0, . . . , 0.3 inside the
boundary layer are plotted in figures 16(a)–16(d). Disturbances with higher frequen-
cies were present, but with very small amplitudes. The highest amplitude curves
(with amplitudes > 10−2) are virtually identical to those in figure 10. However, the
presence of the additional three forced modes leads to the nonlinear generation of
several other modes that were not present (or very small) in figure 10, most notably
modes with k = 1. The growth of the high-amplitude mode F = 0.1, k = 2 is identical
to the one in figure 10 from § 4.3 and close to those in §§ 4.1 and 4.2.

The evolution of the forced modes with small forcing amplitude (F = 0.1, k = 1, 3, 4)
in figure 16(b) is quite different from that in the linear and low-amplitude calculations
in §§ 4.1 and 4.2. This indicates that the nonlinear interaction with mode F = 0.1,
k = 2 is more important than the linear behaviour intrinsic to those modes. However,
mode F = 0.1, k = 2 is by far the dominant disturbance component of the flow (see
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Figure 13. Case NL-1: u plotted vs. t/T , for several streamwise locations x, in the plane z = 0.
Each curve is taken at the respective y location of maximum amplitude. Top curve at x = 1.3,
bottom curve at x = 6.1, x-increment between consecutive curves is 1.2. The vertical offset between
consecutive curves corresponds to u = 0.5.
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Figure 14. Case NL-1: disturbance velocity u plotted over (y, z) at x = 4.9 and at t/T = 1 (a),
t/T = 3.5 (b), t/T = 6 (c) and t/T = 8.5 (d ).

figure 16(b). Hence, the time signals u(t) and the evolution of the r.m.s.-amplitudes in
x and y are almost the same as in § 4.3. Thus, they are not plotted here.

Overall, the low-amplitude forcing of the additional spanwise modes does not
appear to have a significant impact on the characteristics of the ‘numerical K-mode’,
compared to the single mode forcing in § 4.3.



18 H. F. Fasel

Suction/blowing slot between x = 0.48 (Reδ = 377) and x = 0.72 (Reδ = 462), F = 1,
Case TS-NL-1: v̂ = 1× 10−3

Case TS-NL-mult: v̂ = 1× 10−3

Case TS-trans: v̂ = 2× 10−3

Table 2. Computational parameters for generation of TS-waves.
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Figure 15. Case NL-1: profiles of the total velocity uT at x = 4.9 and at z = 0 (a), z = 0.02618 (b),
and z = 0.05234 (c), plotted vs. the normal coordinate y scaled by the local Blasius displacement
thickness δ(x). The curves are: �, t/T = 1; �, t/T3.5; O, t/T = 6; 4, t/T = 8.5.

5. Interaction of the K-mode with a Tollmien–Schlichting wave
From experiments and from the calculations in the previous section it is apparent

that the K-mode does not directly cause transition, at least not for disturbance
amplitude levels urms < 15%U∞. Thus, there must be some instability mechanism,
which may be affected by, but is distinct from, the K-mode, that causes transition.
Experimental evidence (Kendall 1992) suggests that TS-waves may play a crucial role
in transition even in the presence of the K-mode.

In the present numerical investigation, the interaction between the K-mode and
TS-waves is studied by introducing a two-dimensional TS-wave into the unsteady
boundary layer flows computed in §§ 4.3 and 4.4. A suction/blowing slot near the
inflow boundary is used to generate the TS-wave. The frequency F = 1 of the TS
wave is chosen such that it is ten times the frequency F = 0.1 of the free-stream
vortices that excite the K-mode. Hence, T = 1 is the period of the TS-wave. The
parameters used for the generation of the TS-wave are listed in table 2.

In § 5.1, a two-dimensional TS wave is added to the single-wavenumber, high-
amplitude K-mode flow calculated from case NL-1 in § 4.3. In § 5.2, a TS-wave is
added to the multiple wavenumber flow from case NL-mult in § 4.4. Finally, using
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Figure 16. Case NL-mult: amplitudes of disturbances with spanwise wavenumber γ = 30k. The
curves are for k = 0 (•), k = 1 (�), k = 2 (�), k = 3 (O), k = 4 (4), k = 5 (◦), k = 6 (�),
k = 7 (�), k = 8 (H). (a) Steady disturbances, (b) F = 0.1, (c) F = 0.2, (d ) F = 0.3.

the K-mode flow from § 4.4, the amplitude of the TS-wave is increased to the point
where it is sufficiently high to cause transition.

5.1. Single-wavenumber excitation of the K-mode

In this section, a two-dimensional TS wave is added to the K-mode flow from
case NL-1 in § 4.3. Hence, this calculation will be referred to as case ‘TS-NL-1’. To
better analyse the results of this simulation, the K-mode flow computed in § 4.3 was
subtracted from the flow computed here. This decomposition allowed a separation
of the TS-disturbances (i.e. the original TS-wave and any waves due to nonlinear
interaction) from the K-mode.
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Figure 17. (a) Case TS-NL-1: amplitudes of TS-disturbances with frequency F = 1 and spanwise
wavenumber γ = 30k. The curves are for k = 0 (•), k = 4 (4), k = 8 (H). (b) As (a) but linear
reference calculation without Klebanoff-mode. The curves are for k = 0 (•) (two-dimensional wave),
k = 1 (�) (three-dimensional wave).

In figure 17(a), the amplitudes of disturbance waves with frequency F = 1 and
spanwise wavenumbers γ = 30k are plotted. Apart from the two-dimensional TS-
wave with spanwise wavenumber 0, only waves with spanwise indices k = 4, 8 have
significant amplitudes. These waves are due to nonlinear interactions between the
two-dimensional TS wave and the steady components F = 0, k = 4, 8 of the K-
mode. Indeed, the steady modes with the highest amplitudes in figure 10 are those
with k = 4, 0, and 8. For comparison, the amplitudes of TS-waves obtained from
a linear reference calculation, without the K-mode, are plotted in figure 17(b). In
the reference calculation, only TS-waves with spanwise wavenumbers γ = 0 (two-
dimensional) and γ = 30 (i.e. k = 1) are amplified; all higher spanwise modes are
damped. A noteworthy aspect of these plots is the fact that the highest amplitude
is not attained by the two-dimensional TS-wave with k = 0, but by the disturbance
wave with k = 4. Equally important, the two-dimensional TS-wave is less amplified
than that in the linear calculation in figure 17(b). This reduced amplification agrees
qualitatively with the measurements by Boiko et al. (1994).

The amplitude curves in figure 10 suggest that other important nonlinear interac-
tions would involve the two-dimensional TS-wave and modes F = 0.1, k = 2, 6 to
generate modes F = 0.9, 1.1, k = 2, 6 and mode F = 0.2, k = 4, 0, to generate modes
F = 0.8, 1.2, k = 0, 4, 8. The amplitudes of disturbance waves with frequencies F = 0.9
and F = 1.1 are plotted in figure 18(a). Only waves with spanwise indices k = 2 and
k = 6 have significant amplitudes, just as expected from the amplitudes in figure 10.
Figure 18(b) shows the amplitude curves of TS-disturbances with frequencies F = 0.8
and F = 1.2, with the dominant modes k = 0, 4, 8, again as expected.

The phase velocities of TS-disturbances with frequency F = 1 are plotted in
figure 19(a). The large fluctuations of the curves for the three-dimensional waves
are due to the fact that the amplitudes of these waves are very small for x < 2.5
(k = 4) and x < 3.5 (k = 8), see figure 17(a). At such small amplitudes the calculation
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Figure 18. Case TS-NL-1: amplitudes of TS-disturbances with spanwise wavenumber γ = 30k
and (a) frequency F = 0.9 (- - - -) and F = 1.1 (−−); the curves are for k = 2 (�), k = 6 (�);
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Figure 19. (a) Case TS-NL-1: phase velocity of TS-disturbances with frequency F = 1 and spanwise
wavenumber γ = 30k. The curves are for k = 0 (•), k = 4 (4), k = 8 (H), at y = 0.0126. (b) As (a)
but case TS-ref. The curves are for k = 0 (•) (two-dimensional wave), k = 1 (�) (three-dimensional
wave).

of the phase velocity involves computing the ratio of two very small numbers,
making it very sensitive to any spurious disturbances. Hence, the contribution of
other nonlinearly generated waves can easily overwhelm the phase calculation of the
TS-waves. However, downstream of x = 3.5, the curves are sufficiently smooth to
allow a useful interpretation. They show that TS-disturbances with frequency F = 1
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Figure 20. (a) Case TS-NL-1: u plotted vs. t/T , for several streamwise locations x, in the plane
z = 0. Each curve is taken at the respective y location of maximum amplitude. The curves are, from
top to bottom, at x = 1.3, x = 2.5, x = 3.7, x = 4.9 and x = 6.1. A vertical offset of 0.1 corresponds
to u = 0.1. (b) As (a) but at x = 4.9 for several spanwise locations z. Top curve at z = 0, bottom
curve at z = 0.10472, z-increment between consecutive curves is 0.01309.

have roughly the same phase velocity as the linear two-dimensional wave. This is
in contrast to the linear reference case, plotted in figure 19(b), where the oblique
wave with k = 1 has a significantly higher phase velocity than the two-dimensional
wave. Thus, the nonlinearly generated oblique waves appear to be phase locked to
the two-dimensional wave.

So far, the amplitude and phase velocity plots have provided information about the
evolution of the TS-disturbances in frequency–wavenumber space. Additional insight
into the nature of the disturbance waves can be gained by considering their evolution
in physical (x, y, z) space and in time. Time signals u(t) of the TS-disturbances at
different x locations are plotted in figure 20(a). These curves correspond to the curves
in figure 15. The total flow would be a superposition of the respective curves in
both figures, added to the steady Blasius flow. In figure 20(b), time signals u(t) are
plotted at x = 4.9, at different spanwise locations. The top curve in figure 20(b), at
z = 0, corresponds to the fourth curve in figure 20(a). From the curves in figure 20
it is readily apparent that the different Fourier modes seen in the amplitude plots
correspond to an amplitude modulation of the original TS-wave.

A comparison with the instantaneous velocity profiles u(y, z) of the K-mode in
figure 14 reveals that the strongest fluctuations of the TS-disturbances coincide with
localized regions of negative u-velocity of the K-mode near the wall, i.e. with a (locally)
thickened boundary layer. Take, for example, the top curve at z = 0 in figure 20(b).
The strongest fluctuations occur around t/T = 3.5 (modulo 10), whereas a period of
relative calm occurs around t/T = 8.5. On the other hand, the situation is reversed
at z = 0.05236, the fifth curve in figure 20(b). Figure 14 shows that at t/T = 3.5,
the K-mode u-velocity is negative near the wall around z = 0 and attains a (positive)
maximum around z = 0.05236, while the maxima/minima are reversed at t/T = 8.5.
It is known from linear stability theory that increasing the boundary layer slope at the
wall stabilizes a flow, while decreasing the slope destabilizes the flow. Furthermore,
figure 15 shows that the u-velocity profiles have an inflection point over some range
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of z and t, which may further increase the instability of the flow. These observations
suggest the following explanation for the amplitude modulation of the TS-wave:

The time scales of the low-frequency K-mode and of the high-frequency TS-wave
are an order of magnitude apart. Thus, the K-mode can be superimposed onto the
steady Blasius boundary layer and act as a new, time-dependent base flow for the
TS-wave. On the fast time scale of the TS-wave, the new base flow is steady, with
the time entering as a parameter. TS-waves that propagate in a region (locally in space
and time) of negative u of the K-mode would thus experience a more unstable base
flow than the mean flow and be more amplified. On the other hand, those TS-waves
that propagate in a local region of positive u of the K-mode would experience a more
stable base flow, and be less amplified. Since the K-mode is periodic in z and t and
propagates in x, the change of the local stability characteristics causes the formation
of three-dimensional TS-wavepackets from an initially two-dimensional TS-wavetrain.
The three-dimensional wavepackets are centred around the forcing-frequency F = 1
of the two-dimensional wavetrain, with amplitude and phase modulation (at fixed t)
in both x and z. This transient nature of the flow is, of course, lost in the ensemble
averaging typically performed in experiments, and in the Fourier amplitude of the
two-dimensional wave. In fact, the steady, two-dimensional mean flow is more stable
than the Blasius flow, due to the momentum transfer from the free stream to the wall
induced by the K-mode. As a result, the amplitude of the two-dimensional TS-wave,
averaged over t and z, is 58% lower than the amplitude of the linear reference case in
§ 4.1. On the other hand, the maximum velocity fluctuation of the wavepackets plotted
in figure 20(b) corresponds to an amplitude that is 107% higher than the reference
value. Such high-amplitude wavepackets may well be precursors of turbulent spots.

5.2. Multiple wavenumber excitation of the K-mode

Analogous to the simulation in the previous section, a two-dimensional TS wave was
added to the the K-mode flow from case NL-mult in § 4.4. The parameters for the
generation of the two-dimensional TS wave were the same as in § 5.1. This calculation
will be referred to as case ‘TS-NL-mult’. After the calculation, the K-mode flow
computed in § 4.4 was subtracted to yield the TS-disturbances.

Amplitude curves of TS-disturbances with frequency F = 1 are plotted in figure 21.
Because of the more broad-band nature of the K-mode spectrum (see § 4.4), there
are more possibilities for nonlinear interactions. Thus, more spanwise Fourier modes
have significant amplitudes here than in the previous section. However, the amplitude
curves of those modes which are present both in the previous calculation and in
this calculation are almost identical. Hence, the major contribution of the additional
spanwise modes is the excitation of a more broad-band disturbance spectrum.

5.3. Transition

In this section, the calculation of § 5.2 is repeated, with the forcing amplitude of the
two-dimensional TS-wave increased to v̂ = 2× 10−3. This simulation will be referred
to as case ‘TS-trans’. The amplitude increase had a profound impact on the resulting
flow: in the previous calculations, the amplitudes of the TS-disturbances attained a
maximum near x = 5 and decayed thereafter. In this calculation, amplitude growth did
not subside. Instead, transition to turbulence started at x = 4. Since the computational
grid was too coarse to properly resolve a fully turbulent flow, the integration domain
had to be shortened to xmax = 6.1, with the buffer domain starting at xB = 4.76.
Further downstream, the insufficient spatial resolution caused numerical instability.

Amplitude curves of the resulting TS-disturbances with frequency F = 1 are plotted
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Figure 21. Case TS-NL-mult: amplitudes of TS-disturbances with frequency F = 1 and spanwise
wavenumber γ = 30k. The curves are for k = 0 (•), k = 1 (�), k = 2 (�), k = 3 (O), k = 4 (4),
k = 5 (◦), k = 6 (�), k = 7 (�), k = 8 (H).
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Figure 22. Case TS-trans: amplitudes of TS-disturbances with frequency F = 1 and spanwise
wavenumber γ = 30k. The curves are for k = 0 (•), k = 1 (�), k = 2 (�), k = 3 (O), k = 4 (4),
k = 5 (◦), k = 6 (�), k = 7 (�), k = 8 (H).

in figure 22. Note that even though disturbances are artificially damped in the buffer
domain downstream of xB = 4.76, the amplitudes continue to grow as far downstream
as x = 5.5, a sign of the strong disturbance growth associated with transition.

The streamwise development of the TS-disturbance fluctuations is illustrated in
figure 23. The scale of the ordinate axis is reduced by a factor of two relative to
figure 20(a), proportional to the increased forcing amplitude. Thus, the top curve
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Figure 23. Case TS-trans: TS-disturbances u plotted vs. t/T , for several streamwise locations x,
in the plane z = 0. Each curve is taken at the respective y location of maximum amplitude. The
curves are, from top to bottom, at x = 1.3, x = 2.5, x = 3.7 and x = 4.9. A vertical offset of 0.1
corresponds to u = 0.1.

of figure 23, at x = 1.3, appears identical to the top curve of figure 20(a). Further
downstream, however, significant differences appear, and the signal at x = 4.9 is
substantially different from that of the previous calculation. The maximum fluctu-
ation at the last x location corresponds to a u-amplitude of 20%, which is on the
order of the K-mode fluctuations. Such a magnitude of u suggests consideration
of the amplitudes of the combined disturbance flow (K-mode + TS-wave), instead of
the TS-disturbances only. This allows an evaluation of the nonlinear feedback
of the TS-wave onto the K-mode.

The amplitudes of disturbances with frequency F = 0.1 are plotted in figure 24.
Downstream of x = 3.5, all amplitude curves except for mode F = 0.1, k = 2 deviate
substantially from the corresponding curves in § 4.4, showing strong growth up to
x = 5.5. The u r.m.s.-amplitude is plotted in figure 25. Up to x = 4, the amplitude
curve is very similar to those in figure 11. A minor difference is that the curve here
scales as x0.55, which is slightly closer to the experimental results than the curve
in the previous section. This indicates that the presence of the high-amplitude TS-
wave lowers the amplification rate of the K-mode. Downstream of x = 4, the r.m.s.
disturbance level rises rapidly, another sign of transition to turbulence.

Time signals of the combined disturbance flow u(t) = uTS + uKleb are plotted in
figure 26. In the top curve, at x = 1.3, the superposition of the TS-wave and the K-
mode is easily recognizable. The next two curves, at x = 2.5 and x = 3.7, still resemble
the sawtooth waves of figure 13. The last curve however, at x = 4.9, is qualitatively
very different from that of the K-mode without the TS-wave. Time signals u(t) at
x = 4.9, at different z-stations, are plotted in figure 27(a). Time signals u(t) near
the streamwise maximum of the disturbance amplitudes, at x = 5.38, are plotted in
figure 27(b). The fourth curve from the top, at z = 0.03927, shows velocity peaks at
t/T = 10 (modulo 10). On the other hand, the sixth curve, at z = 0.06545, shows the
strongest fluctuations at t/T = 5. In the other curves, fluctuation maxima occur at
both t/T = 5 and t/T = 10. These local fluctuations can be interpreted as incipient
turbulent spots.
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Figure 25. Case TS-trans: root-mean-square disturbance urms(x). The straight line is ∝ x0.55.

A better understanding of the first fluctuation maximum, at t/T = 5, can be gained
from the three-dimensional isocontours of the total spanwise vorticity ωz,B +ωz,Kleb +
ωz,TS plotted in figure 28. These plots show two different types of structures. The
long, narrow vorticity ‘tubes’ at z = 0, z = 0.10472 and z = 0.20944 are associated
with the K-mode. Hence, their dominant spanwise scale is γ = 60, i.e. λz = 0.10472.
The other set of structures are vorticity ‘tongues’ centred at z = 0.10472, with
a spanwise wavelength λz = 0.20944, corresponding to γ = 30. The shape of these
vorticity ‘tongues’ is typical of the vorticity structure associated with a Lambda-vortex,
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Figure 26. Case TS-trans: combined disturbance uTS + uKleb plotted vs. t/T , for several streamwise
locations x, in the plane z = 0. Each curve is taken at the respective y location of maximum
amplitude. The curves are, from top to bottom, at x = 1.3, x = 2.5, x = 3.7 and x = 4.9. A vertical
offset of 0.5 corresponds to u = 0.5.

u

–4

0

0 10 20 30 40 50
t / T

–3

–2

–1

–4

0

0 10 20 30 40 50
t / T

–3

–2

–1

(a) (b)

Figure 27. Case TS-trans: combined disturbance uTS + uKleb plotted vs. t/T , at (a) x = 4.9 and
(b) x = 5.38, for several spanwise locations z. Each curve is taken at the respective y location
of maximum amplitude. Top curve at z = 0, bottom curve at z = 0.10472, z-increment between
consecutive curves is 0.01309. A vertical offset of 0.5 corresponds to u = 0.5.

characteristic of the fundamental breakdown to turbulence, see Rist & Fasel (1995).
Hence, the breakdown of this wavepacket appears to be caused by a resonance
between the two-dimensional TS-wave and an oblique wave with γ = 30. Further
evidence that the fluctuation peak near t/T = 5 in figure 27(b) is indeed due
to a fundamental breakdown is given by the three-dimensional isocontours of the
streamwise vorticity ωx, plotted in figure 29. As discussed before, the ωx-vorticity
of the K-mode is very small. Hence, the K-mode is not visible in these plots. TS-
waves, on the other hand, and the Lambda-vortex associated with the fundamental
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Figure 28. Case TS-trans: contours of constant total vorticity ωzT = 50 at (a) t/T = 4 and
(b) t/T = 5. View from upstream.

breakdown do have a sizeable ωx-component. This fact is reflected in the shape of
the ωx-isosurfaces, which are indicative of a Lambda-vortex.

The interpretation of the second fluctuation peak in figure 27(b), near t/T = 10,
follows that of the first one. The events associated with this wavepacket are much
more energetic and they occur a bit farther upstream. The ωz isocontours are plotted
in figure 30. The long vorticity tubes of the K-mode are now offset by 0.05236 in
the spanwise direction relative to those in figure 28. The reason for the offset is the
phase shift of the K-mode due to the time delay of one half-period between the two
fluctuation maxima. Another important difference is that there are now two Lambda-
vortices, aligned with the ωz-tubes of the K-mode. Apparently, the breakdown of this
second wavepacket is due to a resonance between the two-dimensional TS-wave and
an oblique wave with γ = 60, i.e. half the spanwise wavelength of the breakdown
of the first wavepacket. The corresponding ωx isocontours are plotted in figure 31.
These plots confirm the shorter spanwise scale of this breakdown.

The numerical simulation demonstrates how the interaction between a time-
harmonic, low-frequency free-stream perturbation and a time-harmonic, high-
frequency, two-dimensional TS-wave leads to intermittent transition via a fundamental
breakdown of TS-wavepackets. The wavepackets are narrow in the spanwise direc-
tion, with the lateral scale imposed by the K-mode. This agrees with the experimental
observations of Kendall (1985, 1992). Also, there appears to be a competition between
two distinct fundamental resonances leading to the breakdown of the TS-wavepackets:
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Figure 29. Case TS-trans: contours of constant vorticity ωx = ±10 at (a) t/T = 4 and
(b) t/T = 5. View from upstream. Shaded surfaces indicate negative vorticity.

the more energetic one occurs on the narrow spanwise scale γ = 60 imposed by the
K-mode; the second breakdown, however, is due to a resonance on the larger scale
γ = 30, which is closer to that of a fundamental resonance in a clean Blasius bound-
ary layer without the K-mode. One can expect that a more broad-band disturbance
spectrum would give rise to more possible resonances, increasing the likelihood of
transition at a lower Reynolds number.

A key word here is intermittency. In the numerical simulation, the low-frequency
periodicity of the K-mode is clearly defined. Thus, it is rather easy to trace the
developments that lead to transition, and to distinguish between the two different
instances of wave-packet breakdown that occur during every period of the K-mode.
In experiments, on the other hand, the frequency and wavenumber spectrum of
the disturbances is more broadband. Hence, there is no distinct overall periodicity
that could be exploited in measurements and in flow-visualizations. To the contrary,
the band-pass filtering and ensemble averaging usually performed on experimental
data obscures the crucial role that the K-mode plays in the spanwise and timewise
modulation and amplification of TS-waves. Thus, narrow wavepackets appear in a
seemingly random fashion, with growth and spreading rates that are significantly
different from those (ensemble-averaged) of artificially induced wavepackets. As a
result, to date it has been impossible to demonstrate in experiments a causal relation
between the K-mode, TS-waves, and transition. There is clearly a need to perform
experiments with a controlled introduction of K-mode-type disturbances and TS-
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Figure 30. Case TS-trans: contours of constant total vorticity ωxT = 100 at (a) t/T = 9 and
(b) t/T = 10. View from upstream.

waves to confirm (or disprove) the transition mechanism established by the present
numerical simulations.

In addition to the calculations presented here, several other calculations were per-
formed to verify the relevance of the above results. In those calculations, different
fundamental spanwise wavenumbers γ1, disturbance spectra amp(f, k), and amplitudes
were used. The results of those calculations showed that, for a given r.m.s.-amplitude
of the K-mode, a more broad-band spectrum of the K-mode reduced the threshold
amplitude of the TS-wave necessary to trigger transition. This was expected in light
of the results in §§ 5.1 and 5.2. However, the mechanism remained the same: tran-
sition was always a result of fundamental resonance. No indication of subharmonic
resonance was observed.

6. Summary
In this work, direct numerical simulations (DNS) of the Navier–Stokes equations

were used to investigate the role of the K-mode in laminar–turbulent transition in
a flat-plate boundary layer. To model the effects of free stream turbulence, volume
forces in the free stream close to the leading edge of the plate are used to generate
low-frequency vortices outside the boundary layer. The response of the boundary
layer to these free-stream vortices in the numerical simulations was found to agree
qualitatively and quantitatively with the response of boundary layers to free-stream
turbulence in experiments. This remarkable agreement validates the numerical model
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Figure 31. Case TS-trans: contours of constant vorticity ωx = ±10 at (a) t/T = 9 and
(b) t/T = 10. View from upstream. Shaded surfaces indicate negative vorticity.

used in this work. The results of the numerical simulations provide substantial insight
into the nature of the K-mode. The main results can be summarized as follows:

(i) The boundary layer response to the excitation by free-stream turbulence is
concentrated in a narrow band of wavenumbers and frequencies. Specifically, the
fairly universal spanwise scale of the K-mode fluctuations, measured in numerous
experiments in different facilities, appears to be an intrinsic scale of the boundary
layer.

(ii) Due to the nature of the boundary layer receptivity, it is not necessary to
force a broad-band spectrum of the turbulence in the free stream to obtain the key
characteristics of the K-mode. The calculations in this work showed that the forcing
of a single disturbance component in the free stream suffices to obtain the proper
scaling of the fluctuations inside the boundary layer.

(iii) The preferred spanwise scale of the disturbances is similar for linear and for
nonlinear, high-amplitude fluctuations. The streamwise growth and the wall-normal
scaling of the velocity profiles, however, are dependent on the amplitude. The growth
rates and u(y) profiles of linear disturbances with the frequency selected here, F = 0.1,
are substantially different from those measured in experiments. On the other hand,
nonlinear disturbances with large amplitudes similar to those measured in experiments
exhibit the proper scaling in both x and y. Hence, due to its high amplitude, the
characteristics of the K-mode appear to be intrinsically nonlinear.

(iv) The low values of ωx, compared to ωy and ωz , indicate that the low-frequency
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fluctuations associated with the K-mode are not streamwise vortices. Rather, they are
essentially spanwise variations of the boundary layer thickness.

After establishing the validity of the numerical model for the K-mode, the in-
teraction between the K-mode and a TS-wave was investigated. A suction/blowing
slot at the wall was used to introduce a time-harmonic, two-dimensional TS-wave
into the boundary layer, in addition to the K-mode discussed above. The results of
these simulations lead to the following interpretation of the interaction between the
K-mode and a Tollmien–Schlichting wave:

(i) The low-frequency, high-amplitude fluctuations of the K-mode, added to the
steady mean flow, form a new ‘base flow’ for the high-frequency TS-waves. Due to
the nature of the K-mode, this new base flow is periodic in z and t.

(ii) A locally positive u-velocity of the K-mode, corresponding to a thinning of
the boundary layer, stabilizes the local flow, while a locally negative u-velocity, i.e. a
thicker boundary layer, destabilizes the flow.

(iii) Due to the periodic change of the boundary layer stability in z and t, an ini-
tially two-dimensional TS-wavetrain undergoes differential amplification as it travels
downstream, evolving into three-dimensional wavepackets.

(iv) When the fluctuations of a wavepacket are sufficiently strong, a fundamental-
resonance Floquet instability sets in and triggers the breakdown of the wavepacket
into a turbulent spot. However, this process is not unique. In the numerical simulation
there is a competition between two distinct fundamental resonances, associated with
different spanwise wavenumbers. One can expect that the broadband wavenumber
spectrum of a typical experiment would give rise to even more possible resonances.
The crucial point appears to be that the route to transition is that of a fundamental
resonance.

Thus, in the proposed mechanism the presence of the K-mode modifies the classical
transition mechanisms of linear and secondary instability, rather than introducing a
new instability. In the end, transition is still caused by the amplification and breakdown
of TS-waves.

This paper is based on the PhD thesis by Hubert L. Meitz, supervised by the
author. The author is grateful to H.L.M. for his excellent work. The author would
also like to thank Steven Crow, James Kendall, and Edward Kerschen for many
valuable comments. This work was supported by the Office of Naval Research under
contract number N00014-91-J-1787 and by NASA-Langley under contract number
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limite laminaire à la turbulence de l’écoulement general. ONERA Rap. Tech. 1/5018 AYD,
June 1978.

Bertolotti, F. 1993 Vortex generation and wave–vortex interaction over a concave plate with
roughness and suction. ICASE Rep. 93-101.

Boiko, A. V., Westin, K. J. A., Klingmann, B. G. B., Kozlov, V. V. & Alfredsson, P. H. 1994
Experiments in a boundary layer subjected to free-stream turbulence. Part 2. The role of
TS-waves in the transition process. J. Fluid Mech. 281, 219–245.

Craik, A. D. D. 1971 Nonlinear resonant instability in boundary layers. J. Fluid Mech. 50, 393–413.

Crow, S. C. 1966 The spanwise perturbation of two-dimensional boundary layers. J. Fluid Mech.
24, 153–164.

Fasel, H., Rist, U. & Konzelmann, U. 1990 Numerical investigation of the three dimensional
development in boundary layer transition. AIAA J. 28, 29–37.



Interaction of the Klebanoff-mode with a Tollmien–Schlichting wave 33

Gaster, M. & Grant, I. 1975 An experimental investigation of the formation and development of
a wave packet in a laminar boundary layer. Proc. R. Soc. Lond. A 347, 253–269.

Goldstein, M. E. & Leib, S. J. 1993 Three-dimensional boundary-layer instability and separation
by small-amplitude streamwise vorticity in the upstream flow. J. Fluid Mech. 246, 21–41.

Goldstein, M. E., Leib, S. J. & Cowley, S. J. 1992 Distortion of a flat-plate boundary-layer by
free-stream vorticity normal to the plate. J. Fluid Mech. 237, 231–260.

Herbert, T. 1988 Secondary instability of boundary layers. Ann. Rev. Fluid Mech. 20, 487–526.

Kendall, J. M. 1985 Experimental study of disturbances produced in a pre-transitional laminar
boundary layer by weak freestream turbulence. AIAA Paper 85-1695.

Kendall, J. M. 1990 Boundary layer receptivity to freestream turbulence. AIAA Paper 90-1504.

Kendall, J. M. 1992 Boundary layer receptivity to weak freestream turbulence. Notes on Figures
Presented at T.S.G. Meeting, Big Sky, July 13, 1992.

Klebanoff, P. 1971 Effect of freestream turbulence on the laminar boundary layer (Abstract). Bull.
Am. Phys. Soc. 10, No. 11.

Klebanoff, P. S. & Tidstrom, K. D. 1959 Evolution of amplified waves leading to transition in a
boundary layer with zero pressure gradient. NASA TN D 195.

Kloker, M., Konzelmann, U. & Fasel, H. 1993 Outflow boundary conditions for spatial Navier–
Stokes simulations of transitional boundary layers. AIAA J. 31, 620–628.

Meitz, H. L. 1996 Numerical investigation of suction in a transitional flat-plate boundary layer.
PhD dissertation, University of Arizona.

Morkovin, M. V. 1993 Bypass-transition research: issues and philosophy. In Instability and Turbu-
lence in Engineering Flows (ed. D. E. Asphis, T. B. Gatski & R. Hirsh), pp. 3–30. Kluwer.

Rist, U. & Fasel, H. 1995 Direct numerical simulation of controlled transition in a flat-plate
boundary layer. J. Fluid Mech. 298, 211–248.

Westin, K. J. A., Boiko, A. V., Klingmann, B. G. B., Kozlov, V. V. & Alfredsson, P. H. 1994
Experiments in a boundary layer subjected to free-stream turbulence. Part 1. Boundary layer
structure and receptivity. J. Fluid Mech. 281, 193–218.


